ISRAEL JOURNAL OF MATHEMATICS, Vol. 47. No. I, 1984

NORMAL OPERATORS AND MULTIPLIERS
ON COMPLEX BANACH SPACES
AND A SYMMETRY PROPERTY
OF L'-PREDUAL SPACES

BY
EHRHARD BEHRENDS

ABSTRACT
Anoperator T on a complex Banach space X is called normal if there exists an
operator S such that (1/2XT + S)and (1/2iT — S) are hermitian and TS = ST.
We show that T:X— X is normal iff 7':X'— X' is normal. Using a
generalization of the principle of local reflexivity this result enables us to prove
that multipliers on complex L'-predual spaces are always normal.

Let X be a nonzero complex Banach space and T, § operators on X. We will
say that S is an adjoint of T if both (1/2)(T + S) and (1/2i )T — S) are hermitian
(an operator H is called hermitian if ||exp (itH)||= | for every t €R).

Using the well-known properties of hermitian elements in Banach algebras (cf.
for example chapter 2 in [5]) it is easy to see that T has at most one adjoint so
that we are justified in denoting such an adjoint by T* if it exists. If T* exists and
commutes with T we say that T is normal

Adjoints and normal operators have implicitly been treated in [5] in the
slightly more general setting of Banach algebras.

1. THEOREM. T is normal iff T' is normal. In this case we have (T*) = (T")*.

Proor. Obviously T’ is normal if T is normal. Conversely, suppose that T is
normal. We have only to show that (T")* is weak*-continuous since S is an
adjoint of T which commutes with T if S’ =(T")*.

For the proof of this fact we combine the following two assertions:

(A) a general Fuglede-Putnam theorem is valid, i.e., if N and M are normal
operators, then NS = SM implies N*S = SM* for every operator S;
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(B) an operator S:X'— X' is weak*-continuous iff $” commutes with
P:=ixo(ix): X"— X" (where ix : X = X" denotes the canonical injection).

(The proof of (B) is an exercise in elementary functional analysis and for the
proof of (A) one only has to note that the proof of the Fuglede-Putnam theorem
in [6] for the case of operators on a Hilbert space is valid in our more general
situation; it is only of importance that the norms of expi(AM +AM*),
exp i(AN + AN*) are uniformly bounded for A € C, but this is satisfied since
AM + AM* and AN + AN* are hermitian.)

Since T is weak*-continuous, TP = PT". But T" is normal by the first part
of the proof so that ((T')*)'P =(T")*P = P(T")* = P((T')*)". Therefore (T')* is
weak*-continuous.

Notes. (1) The idea of applying (B) to the proof of the weak*-continuity of
(T')* is due to G. Wodinski.

(2) We do not know whether adjoints of weak*-continuous operators on dual
spaces are also weak*-continuous, i.e. whether “T admits an adjoint iff T
admits an adjoint” is valid.

In some cases the spaces X' or X" have nicer properties than X so that it
might be easier to discuss T’ or T” rather than T itself. Of course this is
reasonable only if one has sufficient information about T’ or T". The following
generalization of the principle of local reflexivity implies that T" inherits much
information from T.

2. THEOREM {4]. Given a finite-dimensional space H of operators on X and
finite -dimensional subspaces E CX" and G C X' there is, for every ¢ >0, an
isomorphism I from F:=E +lin {R"E ]R € H} into X such that

O I =1+,

(i) I|enx =Id|enx,

(iii) x'(Ix")=x"(x") for x" € F, x' € G,

)| (IR"=RD)|e|=¢|R| for R EH.

Thus a strategy to prove that certain operators are normal could be the following
combination of Theorem 1 and Theorem 2:

Consider classes of operators Op which have the property that T" is in Op
whenever T is in Op (here Theorem 2 will come into play). Further, consider
Banach spaces X such that every operator on X" which is an element of Op is
normal. Then every operator on X which belongs to Op is normal.

We are now going to illustrate this strategy by an example.
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3. DerNiTioN ([1], [2]). Let T:X— X be an operator. T is called a
multiplier if for every extreme functional p on X there is an a,(p) € C such that
peT =a:(p)p (ie. if every extreme functional is an eigenvector of T').

ExampLes. (1) Let X = CK be the space of continuous functions on a
compact Hausdorff space K. Then the multipliers on X are precisely the
operators M, : f+ hf (h € X). This follows at once from the fact that the
extreme functionals are just the mappings f = Af(k), where A EC, |A|=1,
ke K

(2) More generally, if A is any function algebra, then the multipliers on A are
just the operators M, : f = hf (h € A); cf. [3].

4. LEMMA. Let T be a normal multiplier. Then T* is also a multiplier, and
ar(p) = ar(p) for every extreme functional p.

PrOOF. We have to apply the following assertion with S:=T': X'— X"

If S: Y— Y is normal and Sy, = Ay,
) for some A €EC, yo€ Y, then S*y, = Ay..

Consider N, : ={y | Sy = Ay}. Since § is normal, N, is invariant with respect to
S*. Thus S*|y, = (S|, )*. It follows that S* [y, = (A Idy, )* = A Idx,, and this
proves (*).

In M-structure theory a multiplier S is called an adjoint of a multiplier T if
as(p)= m for every extreme p. To avoid confusion with the terminology of
this paper we will call such an S§ a multiplier-adjoint of T. If a multiplier T
admits a multiplier-adjoint S then T is obviously normal and S = T*. The
preceding lemma just asserts that the adjoint of a normal multiplier is the
multiplier-adjoint so that both definitions of adjoints are consistent. We do not
know, however, whether normality is essential, i.e. whether adjoints of multip-
liers are also multipliers.

It depends on the geometry of X whether every multiplier is normal. For
example, if X = CK, we have (M})= M; for every multiplier M,, and M; is a
multiplier-adjoint of M,.

(More generally, if T is a multiplier on a space X which can isometrically be
embedded as a self-adjoint subspace of a CK-space then a multiplier-adjoint of
T can be defined by T*x : = (T%).)

On the other hand, if X is the disk algebra, then the only normal multipliers
are the constant multiples of the identity operator.
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The following corollary solves a problem from M-structure theory of complex
Banach spaces (cf. p. 71 in [2]).

5. CoroLLARY. Let T be a multiplier on a complex Banach space X. If T' can
be arbitrarily well approximated by linear combinations of L-projections then T is
normal.

(An L-projection on X' is a linear projection E : X’— X' such that ||p|=
IEpli+]p—Ep| for every p € X")

Proor. Let C(X") be the closed linear span of all L-projections on X'. It is
well-known that C(X') is isometrically and algebra isomorphic with the space of
continuous functions on a compact Hausdorff space (see e.g. prop. 1.16 in [2]) so

that every element of C(X’)is normal. Thus our assertion follows from Theorem
l.

We now are going to show that multipliers on L'-predual spaces are normal (a
problem which has been the starting point of the present investigations). As a
preparation we need

6. LEMMA.  Let T : X — X be an operator. Then T is a multiplier iff T" is a
multiplier.

Proor. Every extreme functional on X can be extended as an extreme
functional to X". This implies that T is a muitiplier if T” is a multiplier. Now
suppose that T is a multiplier. By [2], theorem 3.3 there is a A >0 such that

if B = B(x,,r) is an open ball and x € X is an element
*) such that {ux | | |=A}CB, then | xo— Tx|<r,
and by the same theorem we have to show that

if B =B(xs,r)is an open ball in X", then

(**) impli
{ux"| || = A}CB implies that || xj— T"x"||<r.

Let such a ball and x” be given. We apply Theorem 2 with H : =lin{T,1d},
E :=lin{x;, x"}, F: = {0} (¢ will be specified later). With x,: = Ixg, x : = Ix" we
get

lxo— px | = (1 + &) x5 — px”||

=(1+e)’  for every p with [u[=A
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so that | xo— Tx | = (1 + £)r' by (*). (Here r' is any number such that 0<r' < r
and max, =, [|xo— px"[| =)

We have used the fact that I can be chosen with |[I||=1+¢ (and
IT"'|=1+¢)and notonly |[I]|[|I ]| 1+e; this is-a consequence of I |gnx =
Id|rnx since E can be enlarged if necessary such that E N X # {0}.

It follows that

[x6=T'x"| = +e)|xo— IT"x"|
=(1+e)|xo— IT"x"+ TIx" - TIx" ||
= (14 )(lxo = Tx J| +(TT = IT")x"|])
=(+e)+e)+e [ TIx"]),
and this expression is less than r if ¢ is sufficiently small.

7. THEOREM. Let X be an L'-predual space. Then every multiplier on X is
normal.

PrOOF. X" is a CK-space, and we have already noted that multipliers on
CK -spaces are normal. Therefore the theorem is a consequence of Theorem 1
and Lemma 6.

NoTe. Roughly speaking the theorem expresses the following symmerry
property of complex L'-predual spaces X: If a multiplier can be defined on X
then in its definition only such expressions occur which are invariant with respect
to complex conjugation. A simple example should illustrate this:

If X is the space {(x.)|(x.) € ¢, X, = ux;} (where u €C,0< | | =1) then the
multipliers on this L'-predual space are precisely the operators which have the
form (x.)+ (A.x.), where

(*) AM)Ec, A=A

If T is defined by (x.)» (A.X.), then T* is just the operator (x,) (/\_nxn ), and
this definition makes sense since both conditions in (*) are invariant under
complex conjugation.
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