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ABSTRACT 
An operator T on a complex Banach space X is called normal  if there exists an 
operator S such that (1/2)(T + S) and ( 1 / 2 i ) ( T  - S )  are hermitian and T S  = ST.  

We show that T : X - - - - ~ X  is normal iff T ' : X ' - - - ~ X '  is normal. Using a 
generalization of the principle of local reflexivity this result enables us to prove 
that multipliers on complex L~-predual spaces are always normal. 

Let X be a nonzero complex Banach space and T, S operators on X. We will 

say that S is an adjoint of T if both (1/2)(T + S) and ( 1 / 2 i ) ( T -  S)  are hermitian 

(an operator H is called hermitian if I[ exp ( i tH) ll --< X for every t E R). 

Using the well-known properties of hermitian elements in Banach algebras (cf. 

for example chapter 2 in [5]) it is easy to see that T has at most one adjoint so 

that we are justified in denoting such an adjoint by T* if it exists. If T* exists and 

commutes with T we say that T is normal. 

Adjoints and normal operators have implicitly been treated in [5] in the 

slightly more general setting of Banach algebras. 

1. THEOREM. Tis  normal iff T'  is normal. In this case we have (T*)'  = (T')*. 

PROOF. Obviously T' is normal if T is normal. Conversely, suppose that T' is 

normal. We have only to show that (T')* is weak*-continuous since S is an 

adjoint of T which commutes with T if S ' =  (T')*. 

For the proof of this fact wc combine the following two assertions: 

(A) a general Fuglede-Putnam theorem is valid, i.e., if N and M are normal 

operators, then NS = S M  implies N * S  = SM*  for every operator S; 
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(B) an operator S :X'--->X' is weak*-continuous iff S" commutes with 

P : = ix, o (ix)' : X"--> X "  (where ix : X ~ X" denotes the canonical injection). 

(The proof of (B) is an exercise in elementary functional analysis and for the 

proof of (A) one only has to note that the proof of the Fuglede-Putnam theorem 

in [6] for the case of operators on a Hilbert space is valid in our more general 

situation; it is only of importance that the norms of e x p i ( A M + A M * ) ,  

exp i(AN + AN*) are uniformly bounded for A E C, but this is satisfied since 

AM + AM* and ,~N + AN* are hermitian.) 

Since T' is weak*-continuous, T ' P  = PT".  But T"  is normal by the first part 

of the proof so that ((T')*)"P = (T")*P = P(T")* = P((T')*)". Therefore (T')* is 

weak*-continuous. 

NOTES. (1) The idea of applying (B) to the proof of the weak*-continuity of 

(T')* is due to G. Wodinski. 

(2) We do not know whether adjoints of weak*-continuous operators on dual 

spaces are also weak*-continuous, i.e. whether " T  admits an adjoint iff T' 

admits an adjoint" is valid. 

In some cases the spaces X'  or X" have nicer properties than X so that it 

might be easier to discuss T' or T" rather than T itself. Of course this is 

reasonable only if one has sufficient information about T' or T". The following 

generalization of the principle of local reflexivity implies that T" inherits much 

information from T. 

2. THEOREM [4]. Given a finite-dimensional space H of operators on X and 

finite-dimensional subspaces E C X" and G C X '  there is, for every e > O, an 

isomorphism I from F : = E + lin. {R"E [ R E H} into X such that 

(i) II I II II I-'11 --< 1 + e, 
(ii) I [~nx = Id [snx, 
(iii) x '(Ix") = x"(x') for x" ~ F, x' E G, 

(iv) ll ( m " -  RI)18 II ---- e II R II for R e n .  

Thus a strategy to prove that certain operators are normal could be the following 

combination of Theorem 1 and Theorem 2: 

Consider classes of operators Op which have the property that T" is in Op 

whenever T is in Op (here Theorem 2 wilt come into play). Further, consider 
Banach spaces X such that every operator on X" which is an element of Op is 

normal. Then every operator on X which belongs to Op is normal. 

We are now going to illustrate this strategy by an example. 
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3. DEFINITION ([1], [2]). Let T : X ~ X  be an operator. T is called a 

multiplier if for every extreme functional p on X there is an ar(p)  E C such that 

p o T = aT(p)p (i.e. if every extreme functional is an eigenvector of T'). 

EXAMPLES. (1) Let X = CK be the space of continuous functions on a 

compact Hausdorff space K. Then the multipliers on X are precisely the 

operators Mh : f ~  hf (h E X ) .  This follows at once from the fact that the 

extreme funclionals are just the mappings f ~  Af(k), where A E C, 1AI = I, 

k E K .  

(2) More generally, if A is any function algebra, then the multipliers on A are 

just the operators Mh : f ~ hf (h E A ); cf. [3]. 

4. LEMMA. Let T be a normal multiplier. Then T* is also a multiplier, and 

aT,(p) = a~(p) for every extreme functional p. 

PROOF. 

(,) 

We have to apply the following assertion with S : =  T':X'---~ X': 

If S : Y ~  Y is normal and Sy,,= Ay,, 

for some A E C ,  yoE Y, then S ' y , , =  Ay,,. 

Consider N^ : = {y I Sy = Ay}. Since S is normal, NA is invariant with respect to 

S*. Thus S'IN ~ = ( S  INA)*- It follows that S* IN~ =(A IdNA)* = A IdN~, and this 

proves (*). 

In M-structure theory a multiplier S is called an adjoint of a multiplier T if 

as (p )=  a t (p )  for every extreme p. To avoid confusion with the terminology of 

this paper we will call such an S a multiplier-adjoint of T. If a multiplier T 

admits a multiplier-adjoint S then T is obviously normal and S = T*. The 

preceding lemma just asserts that the adjoint of a normal multiplier is the 

multiplier-adjoint so that both definitions of adjoints are consistent. We do not 

know, however, whether normality is essential, i.e. whether adjoints of multip- 

liers are also multipliers. 

It depends on the geometry of X whether every multiplier is normal. For 

example, if X = CK, we have (M*) = Ma for every multiplier Mh, and Ma is a 

multiplier-adjoint of Mh. 

(More generally, if T is a multiplier on a space X which can isometrically be 

embedded as a self-adjoint subspace of a CK-space then a multiplier-adjoint of 

T can be defined by T*x : =  iTS).) 

On the other hand, if X is the disk algebra, then the only normal multipliers 

are the constant multiples of the identity operator. 
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The following corollary solves a problem from M-structure theory of complex 

Banach spaces (cf. p. 71 in [2]). 

5. COROLLARY. Let T be a multiplier on a complex Banach space X. If T' can 

be arbitrarily well approximated by linear combinations of L-projections then T is 

normal. 

(An L-projection on X' is a linear projection E :  X ' ~  X'  such that lip ]l = 

[I Ep II + II P - E p  II for every p • X'.) 

PROOF. Let C ( X ' )  be the closed linear span of all L-project ions on X' .  It is 

well-known that C(X ' )  is isometrically and algebra isomorphic with the space of 

continuous functions on a compact  Hausdorff  space (see e.g. prop. 1.16 in [2]) so 

that every element  of C ( X ' )  is normal. Thus our assertion follows from Theorem 

1. 

We now are going to show that multipliers on L ' -predual  spaces are normal (a 

problem which has been the starting point of the present investigations). As a 

preparation we need 

6. LEMMA. Let T : X - ~  X be an operator. Then T is a multiplier iff T" is a 

multiplier. 

PROOF. Every extreme functional on X can be extended as an extreme 

functional to X". This implies that T is a multiplier if T" is a multiplier. Now 

suppose that T is a multiplier. By [2], theorem 3.3 there is a A > 0 such that 

if B = B(xo, r) is an open ball and x E X  is an element 
(*) 

such that {/xx I I/x ] =< A } C B, then II x o -  Tx I[ < r, 

and by the same theorem we have to show that 

if B = B(x'~,r) is an open ball in X", then 
(**) 

{/xx" I I/x I_- < A} C B implies that [] x'/j- T"x" ]l < r. 

Let such a ball and x" be given. We apply Theorem 2 with H : =  lin{T, Id}, 

E : = lin {x~;, x"}, F : = {0} (e will be specified later). With xo : = Ix~'~, x : = Ix" we 

get  

II x o -  Ixx II--< (1 + e )ll x' , ' ,-/zx" l[ 

_-< (1 + e)r '  for every p, with [/x [_-< A 
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so that llx,~- Tx t1=<(1 + e)r '  by (*). (Here r' is any number such that 0 <  r ' <  r 

and max,,~r~, Ilx:;-/xx" U =< r'.) 

We have used the fact that I can be chosen with II iI1__<i+~ (and 

It t '11--< 1 + ~) and  not  only  II 111 II/ '11 <-- 1 + ~ ; this is a consequence of I t~nx = 
Id I~nx since E can be enlarged if necessary such that E A X ~  {0}. 

It follows that 

II x',; - T"x" II --< (1 + ~)11 x , , -  IT 'x"  II 

= (1 + ~)llx,,-  I T " x " +  T I x " -  TZx" II 

-_< (1 + e )( II x,, - Tx II + II( TI  - IT")x"  [I) 

=< (I + ~)((1 + ~)r '  + ~ II T II II x" II), 

and this expression is less than r if e is sufficiently small. 

7. THZOREM. Let  X be an L ' -predual  space. Then every multiplier on X is 

normal. 

PROOF. X "  is a CK-space, and we have already noted that multipliers on 

CK-spaces are normal. Therefore the theorem is a consequence of Theorem 1 

and Lemma 6. 

NOTE. Roughly speaking the theorem expresses the following symmetry  

property of complex LLpredual  spaces X: If a multiplier can be defined on X 

then in its definition only such expressions occur which are invariant with respect 

to complex conjugation. A simple example should illustrate this: 

If X is the space {(x,) I (x.) E c, x~ -+/zx~} (where/J. E C, 0 < t/J- I =< 1) then the 
multipliers on this L'-predual space are precisely the operators which have the 
form (x~) ~ (Anx.), where 

(*) ( ,~)  ~ c, ,~o -+ ,~,. 

If T is defined by (x~)~ (Anx~), then T* is just the operator (x~)~-, (.~ox,), and 

this definition makes sense since both conditions in (*) are invariant under 

complex conjugation. 
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